
Part II Algebraic Geometry

Example Sheet II, 2019
(For all questions, assume k is algebraically closed.)

1. Show that the simultaneous zeros of sets of homogeneous polynomials form the closed sets in a topology on
Pn. Show that the inclusion morphisms An → Pn from the complement of a hyperplane are continuous in this
topology.

2. Prove the “homogeneous Nullstellensatz,” which says that if I ⊆ S = k[x0, . . . , xn] is a homogeneous ideal and
f ∈ S is a homogeneous polynomial of degree greater than 0, and f(p) = 0 for all p ∈ Z(I), then fq ∈ I for
some q > 0. [Hint: Interpret this in the affine n+ 1-space whose coordinate ring is S.]

3. For a subset X ⊆ Pn, define the ideal of X, I(X), to be the ideal generated by homogeneous polynomials f ∈ S
such that f(p) = 0 for all p ∈ X. Let I ⊆ S be a homogeneous ideal. Show that if X = Z(I) is non-empty, then
I(X) =

√
I. [Hint: You will need to show that

√
I is generated by its homogeneous elements.]

Show this may not be true if X is empty.

4. Show that if I ⊆ k[x0, . . . , xn] = S is a homogeneous prime ideal and Z(I) 6= ∅, then Z(I) is irreducible. Show
that if X ⊆ Pn is an irreducible projective variety, then I(X) is prime.

5. Given distinct points P0, · · · , Pn+1 in Pn, no (n + 1) of which are contained in a hyperplane, show that homo-
geneous coordinates may be chosen on Pn so that P0 = (1: 0: . . . : 0), · · · , Pn = (0: . . . : 0: 1) and
Pn+1 = (1: 1: . . . : 1). [This generalises to arbitrary n a result you are very familiar with when n = 1.]

6. Given hyperplanes H0, · · · , Hn of Pn such that H0∩· · ·∩Hn = ∅, show that homogeneous coordinates x0, . . . , xn
can be chosen on Pn such that each Hi is defined by xi = 0.

7. Let W be an n-dimensional vector space over k. Denote by P(W ) the projective space (W \ {0})/ ∼, where
the equivalence relation is the usual rescaling. Show that the set of hyperplanes in P(W ) is parametrized by
P(W ∗), where W ∗ is the dual vector space to W . If P1, · · · , PN are points of P(W ), describe the set in P(W ∗)
corresponding to hyperplanes not containing any of the Pi. Deduce (using k infinite) that there are infinitely
many such hyperplanes.

8. Let V be a hypersurface in Pn defined by a non-constant homogeneous polynomial F , and L a (projective) line
in Pn, i.e., a subvariety of Pn defined by n− 1 linearly independent homogeneous linear equations. Show that
V and L must intersect in a non-empty set.

9. Decompose the algebraic set V in P3 defined by equations x22 = x1x3 , x0x
2
3 = x32 into irreducible components.

10. Assume char k 6= 2.

i) Show that a homogeneous polynomial F (x0, x1, x2) of degree 2 can be written uniquely in the form xTAx,
where A is a 3×3 symmetric matrix with entries in k and xT = (x0, x1, x2); show that the polynomial is irreducible
if and only if det(A) 6= 0. Let V ⊂ P2 be the algebraic set defined by the equation F = 0, and assume F is
irreducible and k algebraically closed. Show that you can choose coordinates such that F = x20 + x21 + x22, and
that V is isomorphic to P1.

ii) In contrast, show that if f(x, y) ∈ k[x, y] is an irreducible (non-homogeneous!) polynomial of degree 2, k
algebraically closed, then Z(f) is isomorphic to either A1 or A1 \ {0}.

11. Consider the projective plane curves corresponding to the following affine curves in A2.

(a) y = x3 (b) xy = x6 + y6

(c) x3 = y2 + x4 + y4 (d) x2y + xy2 = x4 + y4

(e) 2x2y2 = y2 + x2 (f) y2 = f(x) with f a polynomial of degree n.

In each case, calculate the points at infinity of these curves, i.e., homogenize the equations to obtain equations
for a curve in P2 and identify the resulting points at infinity. Furthermore, find the singular points of the affine
curve. If you wish, you may make assumptions about the characteristic of k to simplify the analysis.

12. If F (x0, . . . , xn) is an irreducible homogeneous polynomial of degree d > 0, prove that

n∑
i=0

xi ∂F/∂xi = d ·F . If F

is irreducible, let X = Z(F ) ⊂ Pn be the projective variety defined by F = 0. In lecture, we defined the notion
of p ∈ X being a non-singlar point of X if p ∈ U is a non-singular point, for U an affine open neighbourhood
of p in X. Assume char k does not divide d. Using the standard open affine cover {Ui = Pn \ Z(xi)} of Pn,
show that the the singular locus of X (the set of points of X which are not non-singular) consists precisely of
the points p in Pn with ∂F/∂xi(p) = 0 for i = 0, . . . , n. [Note: d · F is (degF ) · F , not the differential of F !]



13. Let λ1, . . . , λN ∈ A1. Show A1 \ {λ1, . . . , λN} is an affine algebraic variety, and find a surjective morphism from
A1 \ {λ1, . . . , λN} → A1.

14. Recall from the handout the definition of an algebraic variety, and of a morphism of algebraic varieties.

i) Show that A2 \ {(0, 0)} is an algebraic variety.

ii) More generally, show that any open subset of an algebraic variety is an algebraic variety.

iii) Show that A2 \ {(0, 0)} → P1, (x, y) 7→ x+y
x−y is a morphism of varieties. Does it extend to a morphism

A2 → P1?

15. Let F0(X0, . . . , Xn), . . . , Fm(X0, . . . , Xn) be homogeneous polynomials of degree d. Let Z ⊆ Pn be the subset
of zeros of F0, . . . , Fm, and U = Pn \ Z.

i) Show that U is an algebraic variety by covering it with affine opens, and that F : p 7→ [F0(p) : . . . : Fm(p)]
defines a morphism U → Pm.

ii) Determine U if F ([X : Y : Z]) = [Y Z : XZ : XY ]. What is the image of F?

16. Let V ⊂ P2 be defined by X2
1X2 = X3

0 .

1. Show that the formula (u : v) 7→ (u2v : u3 : v3) defines a morphism φ : P1 → V .

2. Write down a morphism ψ:U → P1, where U = V \ {(0 : 0 : 1)} which coincides with φ−1 on U . What is
the geometric interpretation of ψ?

3. Show that ψ is not defined at (0 : 0 : 1).

17 Let V ⊂ P2 be defined by X2
1X2 = X2

0 (X0 + X2). Find a surjective morphism φ:P1 → V such that, for
P ∈ V , #φ−1(P ) = 2 if P = (0 : 0 : 1), and #φ−1(P ) = 1 otherwise. Is there a morphism ψ:U → P1, where
U = V \ {(0 : 0 : 1)}, which coincides with φ−1 on U?


